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Why PCA?

*Imaging you have a dataset with 5k markers and
200 individuals, how can we model it?

“Qverfitting

*Too many estimated parameters

“Low degree of freedom

+*Some effect of markers confound each other
“Too many dimensions

+*Unable to visualize it
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Does the depth matter?

Jal 2, Gpt h Pulp fiction (1994)
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; Z T is a symmetric matrix,

its eigenvectors would be orthogonal between each other



Kigen structure

; z T is a symmetric matrix,

its eigenvectors would be orthogonal between each other
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Kigen structure
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Summary

* We transtorm variables to aggregate
variance into principle components
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Summary

* We transtorm variables to aggregate
variance into principle components

*1st PC would always has the largest
variance, and each PC is independent

*Use the covariance matrix of original
data to compute eigenvectors

* Eigenvalue = Variance of the PC
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